New anti-vibration material could protect preterm babies

  • Developed metamaterial inspired by a nuclear reactor design 
  • Combined two properties known to dampen vibrations
  • One becomes thicker when stretched along its length
  • The other works with force instead of resisting it
  • Could make safer neonatal transfer vehicles that transport premature babies

There are 16,000 transfers of premature babies to medical facilities each year in the UK alone. 

The babies are often transported over large distances from rural to city locations over significant periods of time, in some cases two hours or more. 

The ambulances, helicopters or aircraft used are miniaturised intensive care units, containing all the equipment required to keep the baby alive.

Scroll down for video 


Researchers developed a special ‘metamaterial’ inspired by a nuclear reactor design that offers protection by combining negative Poisson’s ratio and negative stiffness properties simultaneously

HOW WAS IT MADE? 

Researchers built a special ‘metamaterial’ inspired by a nuclear reactor design.

It combines two unusual properties known to dampen vibrations to a much greater degree than existing materials. 

The ‘double negative’ mechanical metamaterials that combine both negative Poisson’s ratio and negative stiffness properties simultaneously. 

Researchers added three negative stiffness elements – foam inserts, buckled beam inserts and an arrangement of magnets – between the interlocking blocks.

But mechanical vibrations and noise from the equipment and transfer vehicle can provide significant, even life-threatening stress to the most vulnerable and delicate human lives. 

As we discovered when speaking to clinicians, transfers are sometimes aborted as a result of the stress that develops in the baby. 

These vehicles need materials and structures to reduce the noise and vibrations to tolerable levels.

Our team has recently developed a special ‘metamaterial’ inspired by a nuclear reactor design that offers a double whammy of protection by combining two unusual properties known to dampen vibrations to a much greater degree than existing materials. 

Once we’ve tested and adapted the material, it could be used to help make safer neonatal transfer vehicles. 

And it could even be used in much bigger structures, for example to help prevent earthquake damage in buildings.

Auxetic materials can dampen vibrations. 

They have what’s called a negative Poisson’s ratio, which means that they become thicker when stretched along their length, unlike an elastic band, which becomes thinner. 

Imagine stretching a crumpled or folded sheet of paper. 

METAMATERIAL FACTS

 According to the Institute of Physics, metamaterials can bend electromagnetic radiation such as light around an object to give the appearance that it isn’t there. 

To date some researchers have used such properties of metamaterials to create devices that can bend certain forms of radiation such as near-infrared radiation. 

So far, however, producing the same effect with visible light has proved more of a challenge.

The unfolding of the paper as it is stretched causes the sheet to become both longer and wider. 

This is the auxetic effect.

There are also other unusual materials that contract (rather than stretch) along their length when pulled lengthwise (negative stiffness), which also have dramatic vibration damping properties when used as part of a composite material.

If you stand a ruler on its end and push it down from the top it will bend into a C shape. 

If you then push sideways against the mid-point of the outer edge of the C, initially the ruler will offer resistance to the sideways push. 

That’s positive stiffness. 

But keep increasing the force and the bend in the ruler snaps through to the other side, creating an inverted C shape. 

During the snap-through period, the ruler is working with the force, not resisting it. 


Once we’ve tested and adapted the material, it could be used to help make safer neonatal transfer vehicles that transport premature babies like Linet Ebei (pictured), who was born after 28 weeks weighing just 1.5kg in Kenya

So in this transition phase it displays what is called negative stiffness.

One way of achieving such unusual properties is to develop mechanical metamaterials. 

These are made from a particular geometric arrangement of smaller building blocks that give the materials their special mechanical properties. 

We have developed ‘double negative’ mechanical metamaterials that combine both negative Poisson’s ratio and negative stiffness properties simultaneously.

METAMATERIAL AS INSULATION 

A new material that can block out noise at the touch of a button could provide a new type of smart sound insulation to help avoid interruptions in the middle of the night.

The material uses spring-like structures that can be stretched or squashed to interfere with sound waves, effectively turning the noise that can pass through it on or off.


 A separate team of researches designed a new metamaterial  (pictured) that can be used to block out noise

It could provide a new way of creating rooms that can have their sound proofing turned on and off, which could find uses in buildings or transportation. 

The material, for example, could be used to insulate homes allowing sounds of the world outside to come inside during the day before being blocked out at night. 

It could even be used when homeowners might want to stop sounds from escaping from their bedroom, or to spare their neighbours from the soundtrack of the film they are watching.

By linking the material to a timer, it could also allow homeowners to turn their bedrooms into silent havens at night, but allow sound to wake them up again in the morning.

Our metamaterials comprise interlocking hexagon building blocks that move together in all directions when compressed, by sliding along the interlocks that connect adjacent hexagons. 

This creates an auxetic effect.

These were in part inspired by the graphite core interlocking structures of some nuclear reactors designed and built in the 1950s and 1960s, which are auxetic and were specifically designed to withstand seismic vibrations during earthquakes. 

We have also added three negative stiffness elements – foam inserts, buckled beam inserts and an arrangement of magnets – between the interlocking blocks.


Thre are three negative stiffness elements in the metamaterial – foam inserts, buckled beam inserts and an arrangement of magnets. The team believes their design could be used in buildings to protect them from earthquakes. Many buildings were destroyed in the 6.6 earthquake that hit Italy in Oct. 2016 (pictured)

We expect the combination of both auxetic and negative stiffness properties in the bulk metamaterial will give it better vibration damping ability than if it just had one of these properties. 

And through careful design, we expect it to be able to dampen vibrations at many different frequencies.

Because the technology can be scaled up or down – and once we have determined exactly how good it is at dampening vibrations – it could be used in lots of different applications, from ambulances to buildings.

HARVARD’S METAMATERIAL  

Harvard researchers developed a framework for designing reconfigurable metamaterials.

This lets them build the structures on a larger scale.

Harvard unveiled a toolkit for designing metamaterials on a larger scale. Working prototypes are built using laser-cut cardboard, double sided-tape and multimaterial 3D printing

By combining design and computational modeling, the team was able to identify a different arrangements and create a blueprint or DNA for building these materials in the future.

Researchers are able to scan close to a million different designs, and select those with the preferred response.

Once a specific design was selected, the team constructed working prototypes of each 3D metamaterial both using laser-cut cardboard and double-sided tape, and multimaterial 3D printing. 

We also think the principle of combining these two properties could be used in other materials. 

For example, you could use collapsible auxetic truss structures as rapidly deployable tents and shelters in military and disaster-relief situations. 

Building negative stiffness into such structures would enable them to provide protection from severe vibrations, such as earthquakes.

We still need to turn the prototype technology into designed and manufactured products, but this metamaterial could have a vibrant future ahead of it.

Andy Alderson, Professor of Smart Materials and Structures, Sheffield Hallam University and Fabrizio Scarpa, Professor of Smart Materials & Structures, University of Bristol

This article was originally published on The Conversation. Read the original article.

 

 






Courtesy: Daily Mail Online

Leave a Reply

Your email address will not be published. Required fields are marked *